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NOMENCLATURE

NXHmRBOWS Z8 X
e

Area of the Adsorbent

Langmuir isotherm fitting parameter (1/MPa)
Cumulative (integral) energy distribution

Single probability density function

Joint probability density function

Exponential curve fitting parameters

Freundlich parameters

a,’/o,?

Global amount adsorbed (moles/kg)

Amount adsorbed in local homogeneous patch (moles/kg)
Partial pressure (MPa)

Saturation adsorption value (moles/kg)

Universal gas constant (kJ/molesK or MPa+*L/mole*K)
Constant separation factor isotherm parameter
Temperature (K)

Adsorbed phase mole fraction

Vapor phase mole fraction

Total number of components in the mixture

GREEK LETTERS

Y; = Activity coefficient in the adsorbed phase

€ = Adsorption site energy (kJ/mole)

Ko = p" central moment of a probability density function

T = Spreading pressure

p = Site matching parameter or covariance of the probability density function
o = Square root of the variance of a probability density function

o° = Excess area of mixing (kg/mole)

¢ = Fugacity coefficient

\I] =

Spreading pressure function A /RT (moles/kg)
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THEORETICAL ASPECTS OF MULTICOMPONENT
ADSORPTION EQUILIBRIA

INTRODUCTION

The need exists for a method to accurately model mixture adsorption equilibria. This
need arises not only from an academic desire to understand the fundamentals of the adsorption
process, but also from the more pragmatic requirement to provide the nucleus of mathematical
models which describe dynamic adsorption systems. In the course of generating results for a
dynamic adsorption system using accepted mathetical models, adsorption iostherm
relationships are regenerated hundred of thousands of times. This points to the importance of
generating equilibrium adsorption data with a minimum of computational burden and a high
degree of accuracy.

Several models have been developed to describe adsorption systems. The simpler
models often are limited in their applicability and accuracy, while the more complicated
systems become too cumbersome or unsolvable under some conditions. Several of the models
are ultimately correlative in nature. While these models provide important information in
understanding the mixture adsorption process, their utility is limited due to the paucity of, and
difficulty in obtaining, mixture adsorption data. As a result, models that can predict mixture
adsorption from single component adsorption data are becoming more popular.

This study will investigate one of the more popular mixture adsorption theories, the
Adsorbed Solution Theory (AST) (Myers and Prausnitz, 1965), and its ability to predict
mixture adsorption from single component data. In an effort to isolate pure theory from the '
effects and inherent errors associated with experimental data, this work will focus mostly on
theoretical manipulations and evaluations of the theory. This report details the development of
a computationally fast adsorption isotherm model that can be applied to systems which
demonstrate energetic heterogeneity. Since this work focuses primarily on the AST, a
background section providing the details of this theory is included below. '

Manuscript approved March 27, 1997




I: ADSORBED SOLUTION THEORY
BACKGROUND

The Adsorbed Solution Theory as proposed by Myers and Prausnitz (1965) is based on
the assumption that an adsorbed mixture can be represented as a homogeneous, well-mixed,
two-dimensional phase. This assumption leads to a series of thermodynamic relations confined
to a two-dimensional plane. Standard three dimensional properties (Pressure and Volume) are
reduced to areal properties (Spreading Pressure and Area). Functions which describe
nonidealities, such as activity coefficients and excess volume of mixing, also translate to two
dimensional analogs. A consequence of this approach is that adsorbate/adsorbent interactions
in the AST are completely separate from adsorbate/adsorbate interactions which are modeled
as mixture nonidealties. The theory uses the spreading pressure of the mixture as the reference
state. The resulting equations are as follows:

;,Tio; = ,Zzl: ;IL + o L.1)
V4

L =2 X (1.2)

Pd, = X,P°y,¢] | (1.3)

PY = S (14)

v = £, (1.5)

n o= Xny, | 1.6)

The function &,(n°) is determmed directly from the single component isotherm for each
specie. The function &#,(n;°) is found using the following equation:




g0 = [ TLan a.7)
0

Or when ¥ is a function of P;°, the %, integral can take the form:

)

g - [ Zap 1.8)

0

The integrand of Equation 1.7 or 1.8 is obtained using the single component isotherm for each
specie using the mixture spreading pressure as the standard state. A more rigorous derivation
of the thermodynamics associated with the AST can be found in Van Ness (1969).

If it is assumed that the vapor and adsorbed phases are ideal (Ideal Adsorbed Solution
Theory - IAST) o° becomes 0 and ¥;, ¢;, and ¢,° all become 1. The resulting 5Z+2 unknowns
in 4Z+2 equations can be determined if Z conditions are known (i.e. partial pressures for each
component). Thus, the method can predict multi-component adsorption values, requiring only
single component isotherm information for each specie in the mixture.

In the IAST, the resultant equations are greatly simplified. However, this
simplification restricts the application of the theory to adsorbates that behave ideally as a
mixture. In adsorption systems that deviate significantly from ideality, a model which
describes the adsorbed phase activity coefficients and excess area of mixing must be employed.
Costa et al. (1981) developed the Real Adsorbed Solution Theory (RAST) to model non-ideal
adsorption systems using liquid phase activity coefficient models. Talu and Zwiebel (1986)
followed with a proof that the adsorbed phase activity coefficients must depend on the system
spreading pressure in order to be thermodynamically consistent. Gamba ez al. (1989 and
1990) then modified the RAST to minimize the errors associated with low pressure regions and
lack of thermodynamic consistency. However, use of this modified RAST is limited to
applications requiring calculations in a small concentration range where binary adsorption data
already exist.

II: THE DEVELOPMENT OF A FAST HETEROGENEOUS BINARY
ADSORPTION ISOTHERM

BACKGROUND

An important practical purpose for an adsorption equilibrium equation is to aid in the
modeling of adsorption-based separation systems. The models that describe such systems
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accurately are often complex and typically involve several layers of nested iterations. At the
root of all the calculations is the equilibrium relation which may get called hundreds of
thousands of times in any given simulation. Therefore, a simple, fast equilibrium relation is
desired to reduce the computational burden and create a manageable overall model.

In an effort to address the need for a computationally fast equilibrium relation, O'Brien
and Myers (1985) developed a fast adsorption equilibrium algorithm (FastIAS) based upon the
Ideal Adsorbed Solution Theory (Myers and Prausnitz, 1965). Although this model is many
times faster than the analogous iterative solution, it is restricted to homogeneous adsorption.
To complicate matters further, the single component isotherm relation used in the FastIAS, the
TALAN (Taylor series expansion of the Langmuir isotherm) (O'Brien and Myers, 1984), is a
heterogeneous isotherm model. This application of a heterogeneous single component
isotherm relation in a homogeneous mixture adsorption model seems somewhat inappropriate.
Additionally, since the majority of adsorption systems of interest can be categorized as
heterogeneous, a new, fast algorithm is needed. This section details the development of a fast
heterogenous binary adsorption equilibrium relation. Because of the need for speed, only
those solutions that produce a single analytical equation are sought.

Adsorbent heterogeneity has been historically modelled by describing the surface as
either patchwise or randomly heterogeneous (Jaroniec and Madey, 1988, p.8). Patchwise
heterogeneity assumes that like sites are grouped together to form independent homogeneous
patches, while random heterogeneity assumes that the individual homogeneous sites are
ungrouped and randomly distributed across the surface. The patchwise model has been
favored by researchers in the past because the location or relative placement of the sites is not
needed. In the random model, site layout is needed to determine lateral interactions between
nearest neighbors. In the patchwise model, since the patches are homogenous and
independent, all nearest neighbors are known to be other homogeneous sites. If, however,
lateral interactions are ignored, the two models become identical.

. For a patchwise heterogenous adsorbent, Jaroniec and Rudzinski (1975) found that the
general equation for heterogeneous adsorption takes on a multiple integral form. In a binary
system the equation becomes:

A, = Lfe"1(TerP2’€v€2)g(€vez)del de, @)

Where N, is the global amount of i-adsorbed, €, is the energy of adsorption, n, is the local
amount of i adsorbed for .a patch characterized by the adsorption site energies €, and €,, and
g(€,, €,) is the joint probability density function for the distribution of adsorption energies. A
similar equation can be used to describe the adsorption of component 2. Since transposing the
component subscripts in the equations produces the component 2 analog, the remainder of this
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work will consider only the component 1 equation.

The choice of the local isotherm function is determined by the type of adsorption
(monolayer or multilayer) and lateral interactions that are expected on the homogeneous patch.
The majority of past research has focused on monolayer adsorption without lateral interactions
(Jaroniec and Madey, 1988, p. 220). While Jaroniec and Madey (1988, pp. 213-215, 220)
have investigated heterogenous adsorption using local isotherms with lateral interactions and
multi-layer adsorption, the equations are too cumbersome to produce an analytical solution. In
addition, as Jaroniec and Madey (1988, p. 220) state, there is no satisfactory theory for
multilayer adsorption that can be used as a homogeneous local isotherm. For these reasons,
this work will focus on monolayer adsorption with no lateral interactions.

The most common adsorption equation for monolayer adsorption with no lateral
interactions is the Langmuir adsorption isotherm. If it is assumed that the saturated molar
surface coverage is the same for both components (this can later be modified by adding the Q,
* Q, correction detailed below), the local isotherm then takes the form:

lePle €/RT

l -
1+ bPe"™ +ppe

2.2)

The joint probability density function is typically developed by combining the
individual probability density functions with a site matching parameter. The common
statistical representation of this site matching parameter is the covariance of the two
distributions p. p can take on any value from -1 to +1 and is a measure of how the individual
distribution functions are related: p=-1 indicates perfect negative correlation, p=0 indicates
random site matching, p=+1 indicates perfect positive correlation. Perfect positive
correlation means that the site with the highest adsorption energy for component 1 will have
the highest adsorption energy for component 2 with each subsequent site behaving in the same
manner down to the lowest energy site for each component. Perfect negative correlation
means that the site with the highest adsorption energy for component 1 will have the lowest
adsorption energy for component 2 with each subsequent site behaving in the same contrary
manner. Random site matching means that for each adsorption site, the adsorption energy for
component 1 has no bearing on, and is completely uncorrelated with, the adsorption energy for
component 2. All other values of p indicate varying degrees of positive or negative site
matching.

The majority of past research into the predetermined selection of covariance has come

" from the two research groups associated with Jaroniec and Myers. Valenzuela er al. (1988)
have indicated that, since most adsorption phenomena are controlled by dispersion forces,
adsorbates that are similar in size and shape should behave similarly. Therefore, most mixture
adsorption systems, in the absence of chemical interactions, are perfectly correlated (p=1).
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Indeed, Hoory and Prausnitz (1967) found that, for mixtures of ethane and ethylene on
charcoal, a p=1 value gave an excellent fit of the data. Jaroniec (Jaroniec and Madey, 1988,
pp. 199-202, 203-208) has also investigated perfectly correlated adsorption, but limited their
efforts to adsorbates which demonstrate identical single component energy distributions, offset
only by the differences in the means of the individual distributions. The remainder of
Jaroniec's work in this area focuses on the p=0 case.

What follows is an evaluation of the possible solutions to Equation 1. In an effort to be
comprehensive, solutions are sought for each type of site matching: p=0, p=+1 (p=-1
producing mathematically similar results to p=+1), and also for p as a binary fit parameter.
In addition, two methods of solution (direct integration and expansion) are investigated. The
evaluation is separated by the solution approach and is subdivided by the method of site
matching.

THEORY
Direct Integration Solution

A direct, analytical solution from integration is the preferred method of solution for
Equation 2.1. Other methods such as numerical integration, mathematical approximations,
and expansions prior to integration may introduce unwanted errors into the calculation.
Furthermore, a numerical integration or inclusion of an extended series defeats the purpose of
developing a fast, analytical solution to the binary heterogeneous adsorption equation.

A direct integration requires the selection of a joint probability density function. The
simplest function, the bivariate normal distribution used by Hoory and Prausnitz (1967), takes

. the form:
_¥}-209,7,+9;

8(e,€,) = 1 e -6 (2.3)

~ 2mo,0,/(1-p?)

with:
€ -€, €, -€E. "

T = 1 1 "P - 2 2 2.4
L= 2 = = 2.4)

p as a Fit Parameter. Allowing p to be a fit parameter in the binary heterogeneous
adsorption equation is appealing because it removes any presuppositions as to the relative
interaction of each component with the surface. It does, however, add the complexity that
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binary data are required to determine p. In the strictest sense, the model becomes a correlative
rather than a predictive solution. Substituting Equations 2.2 - 2.4 into Equation 2.1 produces
a double integral equation which is horribly complex. However, with a little manipulation and
substitution, the inner (component 1) integral can be reduced to the form:

eUx® + BY)

-hﬁ?ﬂﬁh (2.5)

with x representing €, and A, B, F, G, and D being complex functions of éz, P, and assorted
constants from the above equations. Unfortunately, no analytical solution to this integral has
been found.

p=0 - Random Site Matching. If random site matching is assumed (p=0), Equation 2.3
takes the form:

g(epez) = 2e 2 = fl(e,)fz(ez) (2.6)

()

21:0102

Unfortunately, using Equations 2.2 and 2.6 to solve Equation 2.1 gives an equation of the
same form as Equation 2.5. As with the case where p is a variable, no solution has been
found.

p=1 - Perfect Positive Correlation. If perfect positive correlation is assumed (p=+1), then
the joint probability density function becomes the individual probability density function of one

of the components. Valenzuela ez al. (1988) used this information to simplify Equation 1 to a
single integral form with respect to the reference component 1:

N, = fe ”1(T’P1’Pz’ep€;)f(€1)aex 2.7

Since the energy distributions of the two components are positively correlated, €, can be
represented as a function of the reference energy €,. Accordmg to Valenzuela et al. (1988),
this function (€,") takes the form:

Fy(€}) = Fi(€,) @8

The function F represents the cumulative (integral) energy distributions for each component.
Equation 2.8 states that the value of €, can be found by establishing the €, value for a given:
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site, finding the corresponding area under the component 1 probability density function defined
by €,, and choosing the component 2 energy value which gives an equivalent area under the
component 2 probability density function. If the energy distributions are balanced around the
means (i.e. not skewed), then Equation 2.8 simplifies to the linear form:

02
» 2 _— -—
€ = —2'(61 - 51) + € 2.9)
o,

Jaroniec and Madey (1988, pp. 201-202, 203-208) performed a similar simplification, but
restricted the application to identically shaped energy distributions by fixing the slope of the
linear relationship to one. Unfortunately, as with the other cases noted above, substituting
Equations 2.2 and 2.9 into Equation 2.7 produces the familiar integral form found in Equation
2.5.

O'Brien and Myers Expansion Procedure

A second approach to solving Equation 2.1 follows the Taylor series expansion
procedure O'Brien and Myers (1984) used to develop the TALAN single component
heterogeneous isotherm. The authors expanded the energy dependence of the local Langmuir
isotherm about the mean of the energy distribution. This approach is appealing because it does
not require an a priori specification of a distribution function. In addition, even though this
method uses an expansion to approximate a portion of the equation, the penalty for truncation
at each level is well defined. Each additional term represents an additional central moment of
the probability density function. Therefore, truncating the series at any given point results in
the specification of the general form of the probability density function. For example,
truncation of the O'Brien and Myers expansion after the second term (as in the TALAN) fixes
the shape of the probability function to the symmetric, normal distribution form. Truncation
after the third term allows for skewness. Truncation after the fourth term allows for kurtosis.
It should be noted, however, that each additional term in the series may provide a superior fit
to the data, but adds an additional fit parameter. And, with each additional fit parameter, it
becomes more difficult to determine whether a superior fit is provided because the energy
distribution is better described by the additional moments, or because more parameters can
make a fundamentally poor model seem better.

To apply the approach of O'Brien and Myers to Equation 2.1, their theory must be
extended to account for more than one component. In the case of a binary isotherm, the local
(binary) isotherm needs to be expanded about the means of the energy distributions of both
components yielding: . '




SN ) C) o _ = _ =\
nx(T,Pl,P,,e,,ez) - z;qz; (e,.e,)(z +q)€!1y’(ez &)

(2.10)

where n,®@ is the multiple derivative of the local isotherm with respect to €, (p derivative)
and €, (q* derivative). If we follow O'Brien and Myers, substitute Equation 2.10 into
Equation 2.1 and then interchange the order of integration:

- - )(9)
€,,E
N1=E G 2)

5 53 (p+q)| f f (€, - €)(E, - €)78(€,,€,)de, de, (2.11)
p=0 g= €€, §

And, as with direct integration, the possible solutions can be separated by the method used to
match the sites.

p as a Fit Parameter. Using the distribution defined in Equation 2.3 and a variable p value,
g(€,, €,) cannot be broken into two independent functions of €, and €,. However, the
distribution can be divided such that the inner (component 1) integral becomes:

(€, - Ez-)qu(ez) f; (€, - e—l)pgl(el’ez)del (2.12)

Since the integral is with respect to €,, g,(€,, €,) becomes essentially f,(€,). Thus, the integral
in Equation 2.12 is the p® central moment of f(€,) or g,. Equation 2.11 then becomes:

X — —
n e fe e, - €)1 (€,)de, (2.13)

Unfortunately, p, is a function of €, and therefore cannot be removed from the integral. Thus,
no solution to this equation has been found.

p=0 — Random Site Matching. If random site matching is assumed, the joint probability
density function can be separated into two independent functions as shown in Equation 2.6.
These separate functions f,(€,) and f,(€,) can be directly substituted for g(€,,€,) in Equat1on
2.11. Following the work-up of Equations 2.12 and 2.13, and recognizing the p* and ¢*
central moments leads to the equation:




ny; T (€,,€) 1,1
N = 2:2: P9 2.14
= (p+9)! @19

#p and u, are respectively the p* central moment of the component 1 distribution and the q®
central moment of the component 2 distribution. Following O'Brien and Myers (1984), p, =
1 and p, = 0, so that Equation 2.14 can be written:

- M(P)(‘G—)p. - n@)(g)ﬂ - - n(PX‘I)/'E-—\.. ..
No=m@Ee) « L eI N I GG, 2.15
e m@e) s L e e R (2.15)

The sums can be extended knowing that u,/0? is the variance of the distribution, while p,/c®
represents the skewness and p,/0* represents the kurtosis.

Using Equation 2.2 for the local isotherm and following O'Brien and Myers (1984) in
their development of the TALAN (truncating the sums after the second terms) gives:

x(1+y)(1-x+y)a; + x(y-x-1)a;

N, =0 + 2.16
YT 2R2T3E3 ) @19
where:
€ )
x=Pbek =Pbek
1 R (2.17)
E=1+x+y

It can be seen that Equation 2.16 reduces to the TALAN for single component (P, = y = 0):

2
N = x_ . x(1-x)o} 218
= A 1w 2R2T2(1w)3) ‘ (2.18)

Indeed, fitting each component to a TALAN isotherm gives the parameters (b, Q, &, and o)
- for the binary equation. In addition, assuming a homogeneous surface (6, = 0, =0, €, = €, -
and €, = €,) yields the familiar Langmuir (Equation 2.2) form for both binary and single '
component systems.
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p=1 — Perfect Positive Correlation. As shown above, in the case of perfect positive
correlation, Equation 2.1 simplifies to Equation 2.7. If Equation 2.9 is used to replace the €,
dependence, Equation 2.7 can be expanded a single time about the mean of the component 1
energy distribution giving:

- 2P
N, = §ﬂ5:ii [, & - &Y Rede, 2.19)

The integral in Equation 2.19 is the p®-central moment of the component 1 energy distribution.
To evaluate Equation 2.19, Equation 2.2 is used as the local isotherm. Prior to differentiation
in Equation 2.19, the €, dependence is replaced in Equation 2.2 using the €, function in
Equation 2.9. The sum is then evaluated at €, and &, Truncating the sum after the second
term gives:

2
x0 3x + myim +2) . 2(x + my)?
N, = QG + —=(1 - + ) (220)
R I T 3 g
where:
& &
x=PbeX y = P,be®
' @.21)
2
O,
m=— E=1+x+y
o

As with the p=0 case, Equation 2.20 reduces to the TALAN (Equation 2.18) for single
component (P,= y = 0), and to the basic Langmuir for a homogeneous surface (0, = 0, = 0,
€ = €,and &, = €,).

Binary Systems with Different Molar Monolayer Coverages (Q1 + Q2)

Equations 2.16 and 2.20 represent analytical solutions for a binary heterogeneous
system which adsorbs locally as a monolayer without lateral interactions. These solutions
cannot, however, be applied when the molar monolayer coverages for the two components are
not equal. LeVan and Vermeulen (1981) addressed this problem with binary homogeneous
adsorption using a Taylor series expansion about the mean of the two different saturation
* (monolayer) coverages. Frey and Rodrigues (1994) extended this solution to allow for more
than two components. Since this research is focusing on binary adsorption, only the LeVan
and Vermeulen, binary solution will be considered here. The equations developed from the
LeVan and Vermeulen effort include both a two-term and three-term Taylor expansion. The
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primary equation for the three-term expansion takes the form:

n = —QE— A1 +4,) (2.22)
with:
A = (©Q - 2)—Z—In®
Xty

@, -92) 1 y2 + 2y - 4x - x?
A = ( 1
BT 0y xey O (223)

J3xP +4x +xy -2y - 2y2)
3

le + Q;y . ny(Ql - Qz)2 « 1

—Q-= {
X1y Q0N e Y

+ %)ln(i) - 1) (2.24)

For the two term expansion, the following simplifications to the above equations apply:

O + Oy

X +y

@ -
(2.25)

This analytical solution for different monolayer coverages assumes ideal adsorbed solution
theory thermodynamic interactions. As a result, this solution may be used as the local
isotherm in the proposed heterogeneous model. The O'Brien and Myers (1984) expansion,
detailed in equation 2.11, can be applied using equation 2.22 as the local isotherm, and the
ultimate solution obtained. Due to the complexity of the resultant equations, only the two-
term Taylor expansion form of Equation 2.22 will be considered.

p=0 -- Random Site Matching. When random site matching is assumed, Equation 2.22 is
used for the local isotherm in Equation 2.15. Truncating the expansion after the second term
and using the definitions of Equations 2.17, 2.23, 2.24, and 2.25 gives:
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- o -
N, = '%" A, sz(a B+ (Qz;vzf:?:’)z (2.26)
where:
- 3x2(Q1 -—Q-) . sz@‘Q,) +2x3(—Q-—Q1) +§x__ 3 + (2 27)
E9E e B E B P ’
_ 20,0 29°0-0) 29°0-0) Dy, 20y 228)
@k @ @w)E B8 '
Y = (of+o§)ln€+(xo:+yo:)(2-.§_l.n.5_)+
§ (x%)
w41, (2.29)

+(x20%+y? 6
(x20}+y%03)( ) (x+y){; Ez

p=+1 - Perfect Positive Correlation. When perfect positive correlation is assumed,
Equation 2.22 is used for the local isotherm in Equation 2.19. Truncating the expansion after
the second term and using the definitions of Equations 2.21, 2.23, 2.24, and 2.25 gives:

N = __Q_x_ + A xy(Ql-Qz)lnE

X - 2.3
1 E L2 2 TZ[E - ) B-1 (2.30)
where: .
o = @9_5(1-2—0-‘%’2)4@+'Q‘70—Q(’“E’" Y )+2Q(xg;my i (231)
B = m(m+1¥inE) + & )2 vmy)n1) _ Leemy) (2.32)

. & E?
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= Ax+my)? | 2m(2x+3my-y)in(§)

% @) .
- le+sz}i;)Q(x+m)') (2:34)
il O+ 0ym’y-0(x+m?)  2(cemy) = (2.35)

(x+y) (+y)

It can be seen that, with a little mathematical manipulation, Equations 2.26 and 2.30 reduce to
the TALAN (Equation 2.18) in the limit of one component (P, = y = 0), to the Langmuir
(Equation 2.2) when the surface is homogeneous (6, =0, =0, &, = €,,and &, = €,). and to
Equations 2.16 and 2.20 when the monolayer coverages are equal (Q, = Q, = Q). These
equations may be extended to a higher number of components or to a greater level of
complexity in any of the Taylor expansions.

COMPARISONS AND DISCUSSION

Equations 2.16, 2.20, 2.26 and 2.30 represent a step forward in the development of a
computationally fast heterogeneous adsorption equation. However, what ultimately determines
the utility of the equations and underlying assumptions is the quality of the fit produced when
compared with an exact solution. Since a universal exact solution to Equation 1 has not been
found, the "exact" solution presented for each case will be one found when assuming specific
constraints on the system. What follows is a discussion of how the developed equations
compare to the "exact" solutions calculated for each specific case.

Equal Monolayer Coverages: Q, = Q,

p=0 -- Random Site Matching. Exact solutions were generated and compared to the results
obtained from Equation 2.16 for a variety of conditions. Results are plotted in Figures 2.1 -
2.3. Results from the Langmuir isotherm (Equation 2.2 with &€, = €, and &, = €,) were also
compared with the exact solutions. The exact solutions were generated by substituting
Equations 2.2 and 2.6 into Equation 2.1 and integrating the results numerically using the Euler
method. It should be noted that the "exact” solution is constrained by the assumptions inherent
in Equations 2.2 and 2.6 (i.e. local Langmuir-isotherm and Gaussian shaped energy
distribution curves). The Euler integration was centered on & for each component using 200
integration steps. The selected model isotherm parameters were based on typical values as
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indicated by O'Brien and Myers (1984) and are listed in Table 2.1. A copy of the BASIC
code written to perform the integration and compare the results to the calculated Equation 2.16
and Langmuir results can be found in Appendix A.

TABLE 2.1: Variable values used in numerical calculations

|

T 298 K 298 K
Q 1.0 1.0

3 10*RT 12*RT
b 1.0%e1 C12%e™

Figure 2.1 compares the percent error for Equation 2.16 and the Langmuir isotherm as a
function of total system pressure and breadth of the heterogeneous energy distributions (6/RT).
In this plot, o/RT and the partial pressure for each component are held equal (Y, = 0.5). Asthe
plot shows, the deviations from the exact solution for Equation 2.16 are consistently smaller than
those of the Langmuir equation. While the Langmuir errors get consistently worse with
increasing pressure, the Equation 2.16 errors appear oscillatory. It cannot be determined from the
plot, however, whether the Equation 2.16 series will ultimately converge at higher pressures.

Figures 2.2 and 2.3 show the dramatic difference between the Equation 2.16 solution and
the Langmuir solution. Figure 2.2 gives the Equation 2.16 and Langmuir errors when the energy
distributions for both components are held constant and equal (6/RT = 0.75) while the relative
vapor phase concentrations are varied. Figure 2.3 compares Equation 2.16 and Langmuir errors
when Y, and 6,/RT are held constant at 0.5 and 0.75 respectively, and 0,/RT is varied. In both
plots, the Langmuir errors increase consistently with increasing pressure while the Equation 2.16
errors oscillate around 0. As the plots show, for any given point, the errors obtained for the
Equation 2.16 solution are approximately an order of magnitude better than those obtained from
the Langmuir solution.

p=1 — Perfect Positive Correlation. Exact solutions were generated and compared to the
results obtained from Equation 2.20 for a variety of conditions and plotted in Figures 2.4 - 2.6.
The exact solutions were generated by substituting Equations 2.2 and 2.9 into Equation 2.7 and
integrating the results numerically using the Euler method. As with the p=0 case above, the -
"exact" solution is constrained by the assumptions inherent to Equations 2.2 and 2.9 (i.e. local
Langmuir isotherm and Gaussian or non-skewed energy distribution curves). The Euler
integration was centered on €, using 200 integration steps. The selected model isotherm
parameters are the same as those used in the p=0 calculations above, and can be found in Table
2.1. A copy of the BASIC code written to perform the integration and compare the results to the
calculated Equation 2.20 and Langmuir results can be found in Appendix B.
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Figure 2.4 compares the percent error for Equation 2.20 and the Langmuir isotherm as a
function of total system pressure and breadth of the heterogeneous energy distributions (6/RT).
In this plot, o/RT and the partial pressure for each component are held equal (Y, = 0.5). As the
plot shows, the deviations from the exact solution for Equation 2.20 are consistently smaller than
those of the Langmuir equation. As would be expected for an expansion solution, the deviations
from the exact values are oscillatory with decreasing absolute magnitudes as the breadth of the
distribution gets narrower. Although the error gets as high as 8% for the o/RT = 1.25 solution,
the results still converge with increasing pressure values.

Figure 2.5 shows how Equation 2.20 and the Langmuir isotherm perform when the energy
distributions for both components are held constant and equal (0/RT = 0.75) while the relative
vapor phase concentrations are varied. Once again, Equation 2.20 gives consistently better results
than the Langmuir isotherm.

The final plot in this group, Figure 2.6, provides the most insight into the quality of the
Equation 2.20 results as compared to those of the Langmuir equation. In this plot, Y, and 6,/RT
are held constant at 0.5 and 0.75 respectively, while 0,/RT is varied. As 0,/RT drops from 0.75
to 0.25, the Equation 2.20 error shifts upward in the lower pressure region, but converges more
rapidly as the pressure is increased. The Langmuir solution, however, is so poor that the 6,/RT =
0.25 curve does not fit on the plot.

Unequal Monolayer Coverages: Q, * Q,

p=0 — Random Site Matching. Figures 2.7-2.12 are plots comparing Equation 2.26 results to
those obtained from the homogeneous Langmuir solutions of LeVan and Vermeulen (Equation
2.22). The results from each of these equations are plotted as a percentage of error calculated
from an "exact" solution. The exact solutions were generated by substituting Equation 2.6 and an
ideal adsorbed solution theory, iterative mixture solution based on Equation 2.2, into Equation
2.1 and integrating the results numerically using the Euler method. As with the Q, = Q, case
detailed previously, the "exact" solutions are subject to the constraints inherent in Equations 2.2
and 2.6 (i.e. local Langmuir isotherm and Gaussian shaped energy distribution curves). The Euler
integration was centered on € for each component using 200 integration steps. The selected
model isotherm parameters are listed in Table 2.1. A copy of the BASIC code written to perform
the integration, and compare the results to the calculated Equation 2.22 and Equation 2.26 results
can be found in Appendix C.

The plots can be divided into two series: Figures 2.7 - 2.9 using Q, = 0.9-and Q, = 1.1,
and Figures 2.10 - 2.12 using Q, = 0.8 and Q, = 1.2. The latter of the two cases should represent -
a fairly extreme spread in saturation values, with Q, being 50% larger than Q,. As the plots .
indicate, as values for site energy distribution breadth, vapor phase mole fraction, and sxte energy
distribution ratios are changed,
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definite error patterns develop which are consistent for both the Equation 2.22 and Equation 2.26
solutions. The major difference between the two solutions is that the Equation 2.26 solution
consistently provides a corrective offset. This offset makes the Equation 2.26 solution
significantly superior (as much as an order of magnitude) to the Equation 2.22 solution. In
addition, as would be expected for a Taylor series expansion solution, as the spread in Q values
widens, the solutions for both equations become less accurate and more divergent. It is expected
that this trend would continue if mixtures demonstrating larger differences in Q values were
investigated.

p=1 — Perfect Positive Correlation. Figures 2.13-2.18 are plots comparing Equation 2.30
results to those obtained from the homogeneous Langmuir solutions of LeVan and Vermeulen
(Equation 2.22). The results from each of these equations are plotted as a percentage of error
calculated from an "exact" solution. The exact solutions were generated by substituting
Equations 2.9 and 2.22 into Equation 2.7 and integrating the results numerically using the Euler
method. As detailed previously, the "exact" solutions are subject to the constraints inherent in
Equations 2.7 and 2.22 (i.e. local Langmuir isotherm and Gaussian shaped energy distribution

curves). The Euler integration was centered on € for each component using 200 integration steps.

The selected model isotherm parameters are listed in Table 2.1. A copy of the BASIC code
written to perform the integration, and compare the results to the calculated Equation 2.22 and
Equation 2.30 results can be found in Appendix D.

The plots can be divided into two series: Figures 2.13 - 2.15 using Q, =0.9 and Q,= 1.1,
and Figures 2.16 - 2.18 using Q, = 0.8 and Q, = 1.2. As with the p = 0 case outlined above, as
values for site energy distribution breadth, vapor phase mole fraction, and site energy distribution
ratios are changed, definite error patterns develop which are consistent for both the Equation 2.22
and Equation 2.30 solutions. However, unlike the p = 0 case, the corrective offset provided by
the heterogeneity terms inherent in the Equation 2.30 solution does not always provide a superior
solution. This offset consistently shifts the homogeneous (or Equation 2.22) solutions to the
more positive errors. Since the error function was defined as: moles adsorbed actual - moles
adsorbed theory, positive error readings indicate that the theory is under-predicting the amount
adsorbed. As the plots show, Equation 2.30 gives superior results at the lower total pressure
(Prop) values. As P increases, both solutions drift toward more positive error readings. Thus,
as Py is increased past a threshold value, the Equation 2.30 solution becomes inferior to that of
Equation 2.22.

CONCLUSIONS

As the various plots indicate, a non-iterative, heterogeneous solution has been developed
that provides predictive results superior to those of analogous homogeneous solutions.
Variations in the model's constituent parameters indicate that the results hold for a substantial
range of conditions. The one (general) case where the new heterogeneous solution did not out-
perform the homogeneous solution is rendered insignificant when the following is
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considered: 1) the error for the fast heterogeneous model, within the range of parameters
investigated, was not appreciably higher than that obtained from the homogeneous equation; 2)
the parametric conditions where this occurred were limited to higher total pressures and
divergent Q values; and 3) the errors for these specific cases were very low relative to the
homogeneous solution errors at lower total pressures. As a result, when all conditions are
considered (i.e. the full range of pressure values), the new heterogeneous model provides the
most accurate solution.

An important caveat to this analysis is that the "exact” solutions which are used as error
standards have inherent assumptions that may have had impact on the results. In addition, the
"exact” solution is a theoretical one that is based fundamentally on a heterogeneous adsorption
system. Ultimately, the utility of a developed solution i is dependent on its ability to fit and
predict actual mixture data.

An indication of the importance of developing fast solutions can be found in the time it
took to generate the "exact" solutions in the analysis. On a relatively fast PC (80486 running
at 50 MHz), the compiled code to generate 100 data points for each plot required between 10
and 200 minutes to run. This computational burden can be compared to the immeasurably
short time (milliseconds or less) it takes to execute the single calculation associated with the
fast heterogeneous solution. Considering that, as stated above, any isotherm subroutine in a
dynamic model will be called hundreds of thousands of times, it becomes apparent that a fast
model of the type developed here is desirable.
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10 DEFDBL A-H, L-2

20 DEFINT I-K

30 PI = 3.1415926#: R = 8.312440000000001D-03: ' KJ/MOLE K
40 RT = R * 298

50 DIM FX(502), GX(502)

70 INC = 200

80 GTOT1 = 0O

90 INPUT "ENTER OUTPUT FILE NAME ---> ", FILS
95 OPEN FILS FOR OUTPUT AS #1

100 EB1 = 10 * RT: EB2 = 12 * RT

110 Bl = EXP(~10): B2 = 1.2 * EXP(-10)

115 INPUT "ENTER SIGMA1l/RT --> ", SRT1

117 INPUT "ENTER SIGMA2/RT --> ", SRT2

118 S1 = SRT1 * RT: S2 = SRT2 * RT

120 M = (S2 / s1) ~ 2

130 INPUT "ENTER GAS PHASE MOLE FRACTION Y1 ---> ", Y1
200 FOR PTOT = 0 TO 1! STEP .01

220 Q=1

230 Pl = Y1 * PTOT

240 P2 = PTOT - P1

260 FX(0) = 0: GX(0) = 0

290 GCN = 0

295 Hl = 2 * EB1 / INC: H2 = 2 * EB2 / INC
300 FOR I = 1 TO INC

310 El = H1 * I

320 XS = P1 * Bl * EXP(E1l / RT)

325 PSI1 = (E1 - EBl) / sl

340 Gl = EXP(-(PSI1 ~ 2) / 2) / (S1 * (2 * PI) ~ .5)

345 FCN = 0

350 FOR J = 1 TO INC

360 E2 = H2 * J

370 YS = P2 * B2 * EXP(E2 / RT)

390 PSI2 = (E2 - EB2) / S2

500 Nl =0Q * XS/ (1 + XS + ¥YS)

520 G2 = EXP(-(PSI2 ~ 2) / 2) / (S2 * (2 * PI) A .5)

530 IF (PTOT=0) AND (I=1) THEN GTOT2 = GTOT2 + G2 * H2: GOTO 600
550 FX(J) = N1 * G2 / GTOT2

560 IF (J = INC) THEN FCN = FCN + H2 * FX(J) / 3: GOTO 600
580 FCN = FCN + H2 * ((2 + 2 * (J MOD 2)) * FX(J)) / 3

600 NEXT J ‘

630 IF (PTOT = 0) THEN GTOT1 = GTOTl + Gl * Hl: GOTO 790

650 GX(I) = FCN * G1 / GTOT1

660 IF (I = INC) THEN GCN = GCN + H1 * GX(I) / 3: GOTO 790
680 GCN = GCN + H1 * ((2 + 2 * (I MOD 2)) * GX(I)) / 3

790 NEXT I .

800 X = P1 * Bl * EXP(EB1 / RT)

810 Y = P2 * B2 * EXP(EB2 / RT)

820 XI =1+ X + Y

850 HH = X * (1+4Y) * (1-X+Y) * S1 ~ 2 + X * Y * (Y-X-1) * 82 ~ 2

880 HX1 = Q * (X / XI + HH / (2 * XI ~ 3 * RT ~ 2))

890 ILANG = Q * X / XI

895 IF (FCN = 0) THEN GOTO 920

900 DEL = (GCN - HX1) * 100 / FCN

© 910 DEL2 = (GCN - LANG) * 100 / FCN

820 PRINT USING "###.#### ";PTOT;GCN;HX1;DEL; LANG; DEL2;GTOT1;GTOT2
930 PRINT #1, USING "###.####444# ", PTOT; DEL; DEL2

940 NEXT PTOT

945 CLOSE #1

950 END
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117
118
120
130
200
220
230
240
260
290
295
300
320
340
345
350
360
380
390
500
S10
520
530
550
560
580
700
800
810
820
850
880
890
895
900
910
920
930
940
945
950

DEFDBL A-H, L-2
DEFINT I-K
PI = 3.1415926%: R = 8.312440000000001D-03: * KJ/MOLE K
RT = R * 298
DIM FX(5002)
INC = 1000
GTOT = 0
INPUT "ENTER OUTPUT FILE NAME ---> ", FILS
OPEN FILS$ FOR OUTPUT AS #1
EBl1 = 10 * RT: EB2 = 12 * RT
Bl = EXP(-10): B2 = 1.2 * EXP(-10)
INPUT "“ENTER SIGMAl1/RT --> ", SRT1
INPUT "ENTER SIGMA2/RT --> ", SRT2
S1 = SRT1 * RT: S2 = SRT2 * RT
M= (S2 / 81) ~ 2
INPUT “ENTER GAS PHASE MOLE FRACTION Y1 -—--> ", Y1
FOR PTOT = 0 TO 1! STEP .01
Q=1
P1 = Y1 * PTOT
P2 = PTOT - P1
FX(0) = 0
FCN = 0
H =2 * EBl / INC
FOR I = 1 TO INC
El =2 * EB1 * I / INC
E2 = M * (E1 - EBl1) + EB2
IF (E2 < 0) THEN PRINT "E2 < 0 ERROR": END
XS = P1 * Bl * EXP(El1 / RT)
YS = P2 * B2 * EXP(E2 / RT)
PSI1 = (E1 - EBl) / S1
PSI2 = (E2 - EB2) / S2
N1 Q * XS/ (1 + XS + YS)
Gl EXP(-(PSI1 ~ 2) / 2) / (81 * (2 * PI) ~ .5)
G2 EXP(-(PSI2 ~ 2) / 2) / (82 * (2 * PI) ~ .5)
IF (PTOT = 0) THEN GTOT = GTOT + Gl * H: GOTO 700
FX(I) = N1 * G1 / GTOT
IF (I = INC) THEN FCN = FCN + H * FX(I) / 3: GOTO 700
FCN = FCN + H * ((2 + 2 * (I MOD 2)) * FX(I)) / 3

nnn

I
* Bl * EXP(EB1 / RT)
Y = P2 * B2 * EXP(EB2 / RT) '
+ X +Y
- (3*X 4+ M*Y*(M+2)) / XI + (2*(X+M*Y) ~ 2) / XI ~ 2
HX1 = Q * (X / XI + (X * HH * s1 ~ 2) / (2 * XI * RT ~ 2))
LANG = Q * X / XI .
IF (FCN = 0) THEN GOTO 920 ]
DEL = (FCN - HX1) * 100 / FCN
DEL2 = (FCN - LANG) * 100 / FCN
PRINT USING “###4.#####4 "; PTOT; FCN; HX1l; DEL; LANG; DEL2; GTOT
PRINT #1, USING Bt 13 9% 133333 "; PTOT; DEL; DEL2
NEXT PTOT
CLOSE #1
END
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10 DEFDBL A-H, K-2

20 DEFINT I-J

25 DX = .0000000001#

30 PI = 3.1415926%#: R = 8.312440000000001D-03: ' KJ/MOLE K
40 RT = R * 298 )
50 DIM FX(202), GX(202)

70 INC = 200

80 GTOTl1l = 0: GTOT2 = 0

90 INPUT "ENTER OUTPUT FILE NAME ---> ", FIL$

100 EB1 = 10 * RT: EB2 = 12 * RT

110 Bl = EXP(~10): B2 = 1.2 * EXP(-10)

112 INPUT "ENTER SIGMA1l/RT ---> ", SRT1

113 INPUT “ENTER SIGMA2/RT ---> ", SRT2

115 INPUT "ENTER Q1 --> ", Ql

117 INPUT "ENTER Q2 --> ", Q2

118 S1 = SRT1 * RT: S2 = SRT2 * RT

120 M = (S2 / s1) ~ 2

130 INPUT "ENTER GAS PHASE MOLE FRACTION Y1l ~--> ", Y1l
200 FOR PTOT = 0 TO 1! STEP .01

210 OPEN FIL$ FOR APPEND AS #1

230 Pl = Y1 * PTOT

240 P2 = PTOT - P1

260 FX(0) = 0: GX(0) = 0

290 GCN = 0

295 Hl = 2 * EB1 / INC: H2 = 2 * EB2 / INC

300 FOR I = 1 TO INC

310 El =H1 *1I

320 XS = P1 * Bl * EXP(E1l / RT)

325 PSI1 = (E1 - EBl) / s1

340 Gl = EXP(~-(PSI1 ~ 2) / 2) / (S1 * (2 * PI) ~ .5)

345 FCN = 0

350 FOR J = 1 TO INC

360 E2 =H2 * J

370 YS = P2 * BZ * EXP(E2 / RT)

390 PSI2 = (E2 - EB2) / s2

500 GOSUB 2000

520 G2 = EXP(-(PSI2 ~ 2) / 2) / (82 * (2 * PI) ~ .5)

530 IF (PTOT = 0) AND (I = 1) THEN GTOT2 = GTOTZ + G2 * H2: GOTO 600
550 FX(J) = N1 * G2 / GTOT2

560 IF (J = INC) THEN FCN = FCN + H2 * FX(J) / 3: GOTO 600
580 FCN = FCN + H2 * ((2 + 2 * (J MOD 2)) * FX(J)) / 3
600 NEXT J

630 IF (PTOT = 0) THEN GTOT1l = GTOT1l + Gl * Hl: GOTO 790
650 GX(I) = FCN * Gl / GTOT1

660 IF (I = INC) THEN GCN = GCN + H1 * GX(I) / 3: GOTO 790
680 GCN = GCN + H1 * ((2 + 2 * (I MOD 2)) * GX(I)) / 3

790 NEXT I

795 IF (PTOT = 0) THEN HX1 = 0: LANG = 0: PRINT GTOT1l, GTOTZ2: GOTO 940

800 X = P1 * Bl * EXP(EB1 / RT)

810 Y = P2 * B2 * EXP(EB2 / RT)

820 XI =1 +X +Y

830 QB = (Q1 * X + Q2 * Y) / (X + Y)

835 DL2 = (Q1 - Q2) * X * Y * LOG(XI) / (X + YY) ~ 2

855 A =3 *X "~ 2 * (01 - QB) / ((X +Y¥Y) *XI) +2*X "3 * (0B - Q1)
/ ((X +Y¥) ~2 *XI) +2 *X "~ 3* (0B-20Q1) / ((X+Y) * XI ~ 2)
+QOB*X/XI-3*Q*X"*"2/XI"~2+2*QB*X"3/XI "3

860 B=X*Y* (Q2 -0B) / ((X +Y) *XI) +2*X*Y*~2* (QB - Q2)
/ ((X+Y¥) ~2*XI) +2*X*Y"~2* (QB-202)/ ((X+Y) *XI
A2) -QB*X*Y/XI~2+2*QQR*X*Y"*2/XI*3

865 G = (S1 ~ 2+ 82 "~ 2) * LOG(XI) + (X * S1 ~ 2 + Y * 82 ~ 2) * (3 /
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XI - 6 * LOG(XI) / (X + ¥Y)) + (X~ 2 * S1~2+4+Y~2*82~2) *
(6 * LOG(XI) / (X +Y¥Y) 22 -4/ ((X+9Y) *XI) -1/ XI » 2)

870 . '

875 HH = (Q1 - Q2) * X * Y / (2 *RT ~ 2 * (X +Y) ~ 2)

880 HX1 = QB * X/ XI +DL2 +8S1 ~2* (A+B) / (2 *RT ~2) + G * HH

890 LANGL = QB * X / XI + DL2

895 IF (GCN = 0) THEN GOTO 920

900 DEL = {(GCN - HX1) * 100 / GCN

910 DEL2 = (GCN - LANGL) * 100 / GCN

915 DEL3 = (GCN - ((Ql1 + Q2) / 2) * X / XI) * 100 / GCN

920 PRINT USING "###.##### "; PTOT; GCN; HX1l; DEL; LANGL; DEL2; DEL3

930 PRINT #1, USING “###.#4##4#4# "; PTOT; DEL; DEL2; DEL3

940 CLOSE #1

945  NEXT PTOT

950 END

960 °*

970 °

2000 ' LANGMUIR AST ALGORITHM

2100 °*

2110

2115 IF (PTOT = 0) THEN N1 = 0: RETURN

2120 K1 = B1 * EXP(E1l / RT)

2130 K2 B2 * EXP(E2 / RT)

2200 IC 0

2210 PSI = .0000001

2220 FOR IJ = 0 TO 1 STEP 1

2230 PSIG = PSI * (1 + DX * IJ)

2240 P10 = (EXP(PSIG / Q1) - 1) / K1

2250 P20 = (EXP{PSIG / Q2) ~ 1) / K2

2260 X1 = Pl / P10

2270 X2 = P2 / P20

2280 IF (IJ = O) THEN ER1 = X1 + X2 -~ 1 ELSE DER1 = X1 + X2 - 1

2300 NEXT IJ

2310 IF (ABS(ER1) < DX * 1000) THEN GOTO 2500

2320 IC = IC + 1

2330 IF (IC > 50) THEN PRINT “NON CONVERGE": END

2340 DDER1 = (DER1 - ER1) / (PSI * DX)

2350 PSI = PSI - ER1 / DDER1

2400 GOTO 2220

nn

2420 '
2450
2470
2500 N10 = Q1 * K1 * P10 / (1 + K1 * P10)
2510 N20 = Q2 * K2 * P20 / (1 + K2 * P20)

2520 NTOT = 1 / (X1 / N10 + X2 / N20)
2530 N1 = NTOT * X1

2550 !

2600 RETURN
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10 DEFDBL A-H, K-2

20 DEFINT I-J

25 DX = .0000000001#%

30 PI = 3.1415926#: R = 8.312440000000001D-03: ' KJ/MOLE K
40 RT = R * 298 ’
50 DIM FX(500)

70 1INC = 200

80 GTOT = 0

90 INPUT "ENTER OUTPUT FILE NAME ---> ", FILS

95 OPEN FILS FOR OUTPUT AS #1

100 EB1 = 10 * RT: EB2 = 12 * RT

110 Bl = EXP(-10): B2 = 1.2 * EXP(-10)

112 INPUT "ENTER SIGMA1l/RT ---> ", SRT1

113 INPUT "ENTER SIGMA2/RT =---> ", SRT2

115 INPUT "ENTER Q1 --> ", Q1

117 INPUT "ENTER Q2 --> ", Q2

118 S1 = SRT1 * RT: S2 = SRT2 * RT

120 M = (s2 / s1) ~ 2

130 INPUT "ENTER GAS PHASE MOLE FRACTION Y1 ---> %, Y1
200 FOR PTOT = 0 TO 1! STEP .01

230 Pl = Y1 * PTOT

240 P2 = PTOT - P1

260 FX(0) = 0

290 FCN = 0

295 H = 2 * EB1 / INC

300 FOR I = 1 TO INC

320 El=H*T1I

340 E2 = M * (E1 - EB1) + EB2

345 IF (E2 < 0) THEN PRINT "E2 < 0 ERROR": END

350 XS = P1 * Bl * EXP(E1l / RT)

360 YS = P2 * B2 * EXP(E2 / RT)

380 PSI1 = (E1 - EBl) / s1

390 PSI2 = (E2 - EB2) / S2

500 GOSUB 2000 ‘

510 Gl = EXP(-(PSI1 ~ 2) / 2) / (S1 * (2 * PI) ~ .5)
$20 G2 = EXP(-(PSI2 ~ 2) / 2) / (82 * (2 * PI) ~ .5)
530 IF (PTOT = 0) THEN GTOT = GTOT + Gl * H: GOTO 700
550 FX(I) = N1 * G1 / GTOT

560 IF (I = INC) THEN FCN = FCN + H * FX(I) / 3: GOTO 700
580 FCN = FCN + H * ((2 + 2 * (I MOD 2)) * FX(I)) / 3
700 NEXT I

750 IF (PTOT = 0) THEN HX1] = 0: LANG = 0: GOTO 920

800 X = P1 * Bl * EXP(EBl / RT)

810 Y = P2 * B2 * EXP(EB2 / RT)

820 XI =1+ X+ Y ,

830 OB = (Q1 * X + Q2 *Y) / (X + Y)

835 DL2 = (Q1 - Q2) * X * Y * LOG(XI) / (X + ¥Y) ~ 2

840 QBP = ((Q1L * X + Q2 *M* Y) - QB * (X +M*Y)) / (X + Y)

850  QBPP = ((QL*X+Q2*Y*M*2) - QB* (X+Y*M*2) - 2* (X+M*Y)*QBP)/(X + Y)

855 A = (QB + QBP) * (1 - 2 * (X +M*®*Y) / XI) + (QBP + QOBPP) -~ OB *
(X+Y*M~2) /XTI +(2*QB* (X+M*Y) ~2)/ (XI ~2)

860 B=M?* ((M+ 1) 2 2) * LOG(XI) + (X +Y*M~*2) +2* (X+M*
Y) * (M + 1)) / X1 .

865 G=((X+M*Y) ~2)/ (XT ~2)+ (4* (X+M*Y)~2)/ ((X+
Y) *XI) +2*M* (2 *X+3*M*Y ~Y) * LOG(XI) / (X + Y)

870 '

875 HH=X*A / XI + (Q1 - Q2) * X *Y * (B-G) / ((X + YY) ~ 2)

880 HX1 = QB * X / XI + DL2 + S1 ~ 2 * HH / (2 * RT ~ 2)

890 LANGL = QB * X / XI + DL2

895 IF (FCN = 0) THEN GOTO 920
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900 DEL = (FCN - HX1) * 100 / FCN

810 DEL2 = (FCN - LANGL) * 100 / FCN

915 DEL3 = (FCN - ((Q1 + Q2) / 2) * X / XI) * 100 / FCN
920 PRINT USING "###.##### ";PTOT;FCN;HX1;DEL; LANGL;DEL2;GTOT; DEL3
930 PRINT #1, USING "###.#####%% “; PTOT; DEL; DEL2; DEL3
940 NEXT PTOT

945 CLOSE #1

950 END

960 *

970

2000 ' LANGMUIR AST ALGORITHM

2100 °

2110 °

2115 IF (PTOT = 0) THEN N1 = O: RETURN

2120 K1 = Bl * EXP(E1l / RT)

2130 K2 = B2 * EXP(E2 / RT)

2200 1IC = 0

2210 PSI = .0000001

2220 FOR IJ = 0 TO 1 STEP 1

2230 PSIG = PSI * (1 + DX * 1J) )

2240 P10 = (EXP(PSIG / Q1) - 1) / Kl

2250 P20 = (EXP(PSIG / Q2) - 1) / K2

2260 X1 = P1 / P10

2270 X2 = P2 / P20

2280 IF (IJ = 0) THEN ER1 = X1 + X2 - 1 ELSE DER1 = X1 + X2 - 1
2300 NEXT IJ

2310 IF (ABS(ER1l) < DX * 1000) THEN GOTO 2500

2320 IC = IC + 1

2330 IF (IC > 50) THEN PRINT "NON CONVERGE": END

2340 DDER1 = (DER1 - ER1l) / (PSI * DX)

2350 PSI = PSI -~ ER1 / DDER1

2400 GOTO 2220

2420 !
2450 °*
2470 '
2500 N10 = Q1 * K1 * P10 / (1 + K1 * P10)
2510 N20 = Q2 * K2 * P20 / (1 + K2 * P20)

2520 NTOT = 1 / (X1 / N10 + X2 / N20)
2530 N1 = NTOT * X1

2550 '

2600 RETURN
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